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Abstract 
In many spray applications, it is important to 

know the size and velocity distribution of the drops. 
Conventional particle tracking techniques can require 
prohibitively large computational times, especially in 
regions of low droplet number density or when detailed 
statistics are desired. In this paper, we develop a 
method to compute the statistics directly by solving a 
series of moment transport equations. A maximum 
entropy model is used to close higher-order moments 
appearing in the equations. Solution of these equations 
gives not only the transported moments of the spray, 
but also the maximum entropy probability distribution 
function from which further statistics can be obtained. 
The method has been tested on a quasi-one-dimensional 
spray problem to assess its viability. Submodels which 
account for the effects of the gas on the drops, including 
turbulence modification and correlation between the gas 
and drop velocities, are incorporated. Results for 
expected quantities are in good agreement with the 
solution from a particle tracking simulation. 

Introduction 
Understanding and modeling multiphase flows have 

become of primary interest in a wide variety of 
applications. Of particular importance are spray flows 
such as those associated with liquid fuel injectors, 
industrial coating processes, and agricultural sprays. A 
spray flow can be defined as that regime downstream of 
an injector where a liquid column or sheet has broken 
up and atomized, but the resultant drops continue to 
have some mean velocity relative to the gas phase, as 
opposed to an aerosol where there is no mean slip 
velocity. Both the liquid phase and the gas phase 
continue to  interact dynamically, exchanging  mass, 

momentum, and energy. This evolution can have a 
significant impact, for example, on the combustion 
process inside a liquid rocket engine or on the coating 
produced by a spray application system. For this 
reason, it is necessary to have a full understanding of 
the physics of spray flows and to be able to accurately 
predict not only the distribution of the drops and their 
behavior, but also the dynamics of the gas phase, that 
is, the characteristics of the combined two-phase flow. 

Probably the most-used approach in studying spray 
flows has been the Lagrangian-Eulerian, or particle 
tracking method.1,2'3,4 In this approach, the gas phase is 
predicted by solving the time-dependent, Reynolds- 
Averaged Navier-Stokes (RANS) equations with a 
suitable turbulence model and appropriate exchange 
terms. Drops are stochastically injected into the gas and 
the drop trajectories are computed by integrating a 
Lagrangian equation of motion. 

While the Lagrangian-Eulerian approach has 
provided useful information in many applications, it has 
some significant drawbacks. For instance, data arising 
from any simulation must be post-processed. If the 
quantity of interest is the mean number density in each 
grid cell, this may not pose a problem. However, what 
if we are interested in the mean number density of drops 
in a particular size class? The averaging procedure 
might be simple, but the required computational time is 
increased because a sufficient number of drops must 
pass through the cell to provide a data set large enough 
for a meaningful average. As the quantity of interest 
becomes more specific, the necessary computation time 
becomes more prohibitive. 

An alternative approach which does not involve 
simulation is to compute the evolution of a probability 
density function (PDF) describing the drops.  Williams5 
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was the first to derive a transport equation for a drop 
PDF, called the spray equation, analogous to 
Boltzmann's equation for molecules. However, because 
obtaining a solution to the spray equation is quite 
difficult, Williams solved a simplified version of the 
equation for a steady, one-dimensional spray flow where 
the gas properties were known in advance. Other 
solutions6'7,8,9,10 have been attempted, but with limited 
success. Because of the high-dimensionality of the 
spray equation, computations could only be done with a 
coarse discretization of the phase space. 

A different approach to solving the spray equation 
was taken by Tambour.11 He only considered the size 
distribution, but instead of transporting the PDF, he 
discretized the size axis and derived a set of sectional 
equations within each size bin. The advantage of this 
method is that it reduces the dimensionality of the 
equation to only physical space, though a set of 
transport equations for each bin has to be solved. 

The purpose of this paper is to extend the PDF 
approach and obtain a complete description of a spray 
flow by computing the evolution of its PDF along with 
the gas flow in which it is embedded. This will be 
accomplished by deriving and solving a set of moment 
transport equations for average quantities of interest, 
such as the mean drop velocity and diameter, and 
developing an appropriate closure model. 

Governing Equations 
In deriving the equations that will describe the 

evolution of our system, we will make use of ensemble 
averaging. This is an averaging procedure that is 
independent of any time or length scales. We will also 
restrict ourselves to single-point statistics.12 Before 
constructing a probability density function from which 
average quantities can be obtained, it is necessary to 
discuss some assumptions about the spray. A single 
drop can be described by any number characteristics, or 
marks, such as its size, velocity or temperature. The 
trade-off, though, is in increasing complexity as more 
marks are used. Therefore, it is often sufficient to 
choose a relatively small set of characteristics that 
contains the information of interest. This set of 
characteristics prescribes a state vector a whose 
elements define the axes of a hyperspace, called a- 
space, through which the drop can move. For example, 
if the chosen characteristics of the drop are its position 
in physical space and its diameter, then 
ä = {xl,x2,x3,<j>) and ä-space is a four-dimensional 
hyperspace whose axes are the three position coordinates 
x1,x1,xi and the diameter <j>. As the drop moves 
through physical space or as it evaporates or condenses, 
its location in a -space changes. 

Because we are dealing with point particles, volume 
displacement effects are negligible, and we are able to 
treat any interphase exchange as if the drop were alone 
in a locally uniform gas field. 

Under these assumptions, a probabilistic 
description of the spray can be developed,12 defining 
K(x;t)% as the probability density of finding a single 
drop at a point [x, t). It is also the expected number 
density of drops at x and t. This dual interpretation is 
important since we are generally more interested in the 
expected number density rather than the probability 
density. The probabilistic description also defines a 
function f(ä';x,t), the probability density of finding a 
particular diameter and velocity, conditioned on a drop 
existing at x and t, where ä' -space is the subset of a - 
space excluding the spatial coordinate. By combining 
these two functions, we define the unnormalized single 
particle probability density function for the spray 

F{ä; t)dä = X(x;t)f(ä';x, tjda'dV (1) 

F(a;t) is unnormalized because A.(x;t), also an 
unnormalized PDF, determines how much spray is 
present at x and t. 

If ä = {x,<j),v,T), a transport equation for F[a;t) 
can now be derived.13,14,15 

^ + Vjr.(Fv) + Vv.(ra) 

(2) 

Equation (2) is known as the spray equation. It 
describes the evolution of the probability distribution 
function F(x,(j>,v,T;t) through joint physical, 
diameter, velocity, and temperature space and includes 
source terms accounting for binary collision S2, unary 
breakup 5,, and zero-body events 50 such as nucleation 
and complete vaporization. The spray equation has not 
generally been viewed as a practical way of predicting 
spray flows. It is not an ordinary evolution equation in 
the sense that the quantity of interest is only being 
transported through physical space, but also through 
diameter, velocity, and temperature space. A numerical 
solution requires a full discretization of this hyperspace. 
This makes obtaining a direct solution difficult. 

Despite the difficulties, attempts have been made at 
solving the spray equation.5,6,16,17     Some   of these 

For clarity when denoting a PDF, those arguments over which the 
function is a density will be listed first, followed by a semi-colon, 
followed by arguments that are parameters of the function. 

American Institute of Aeronautics and Astronautics 



solutions make use of an assumed form for the PDF F, 
which leads to a set of transport equations for the 
parameters that describe the assumed form. The primary 
problem with this approach is that there is no guarantee 
that the spray will conform to the assumed distribution 
throughout its evolution, or even that F can always be 
described analytically. 

However, even the most general PDF can be 
described by an infinite set of moments. For instance, a 
one-dimensional distribution's mean determines its 
location on the axis, its variance is a measure of its 
width, the third central moment determines the amount 
of skewness, etc. The value of each moment affects the 
shape of the distribution in some way, but notice that 
each higher-order moment affects the shape in a less 
drastic manner than the next lower-order moment. 
Thus, it is logical to assume that the lowest-order 
moments carry sufficient information to reasonably 
approximate the shape of the distribution as a whole. If 
it is possible to obtain a function for this shape from 
these low-order moments, we can then approximate all 
the other information included in the actual PDF. 
Then, by solving a set of transport equations for these 
moments, we can determine how the approximate 
distribution evolves in time. 

Splitting   the Spray Equation 
Before continuing, we make some simplifying 

assumptions about the spray. First, we will limit our 
description of a drop to its spatial location x, its 
velocity v, and its diameter <j>. Since we are not 
including the drop temperature, we will only be 
considering nonvaporizing sprays. The number density 
of drops will be sufficiently small such that droplet 
collisions can be neglected. Finally, unary breakup and 
zero-body source terms will not be considered. These 
assumptions do not limit the validity of the 
model-what is left out can be included at any point later 
on. We make them here for the sake of simplicity. 

Upon applying these assumptions to the spray 
equation (2), we get 

_ + V,.(Fv) + Vv.(F5) = 0 (3) 

Substituting equation (1) in the form 

F(<$>,v,x;t) = X{x;t)f(4>, \;x,t) (4) 

into (3) and carrying out the product rule gives 

AIU/^ + AV^/V^/V-V^ 
dt       dt        x v    ' x (5) 

+AVv(/ä) + /ä-VvA = 0 

By integrating this  equation over  all   velocity  and 
diameter space, i.e. a'-space, to eliminate/, we obtain 

|i+V,-(A<v» = 0 

where 

<v) = Jvf(ä')dä' (7) 

is the ensemble-averaged, or expected, drop velocity. 
Equation (6) describes the evolution of the expected 
number density of drops through space and time. 
Notice that there is no reference to ä' -space in this 
equation. The integration has reduced the dimension of 
the equation from seven (three spatial, one diameter, and 
three velocity coordinates) to three. 

Multiplying equation (6) by / and subtracting the 
result from equation (5), we get, after rearranging, 

f + V,.(/v) + Vv.(/ä) = 

/[V,-(v> + «v)-v)-V>A 
(8) 

This equation describes the evolution of the conditional 
probability density function through ä' -space. If we 
interpret (8) as a flow equation, then the first term 
accounts for the accumulation of probability. The next 
two terms represent the advection of probability through 
physical and velocity space, respectively. Additionally, 
there are two source terms. 

The first term on the right side represents the 
production of probability due to gradients in the mean 
drop velocity. Suppose that there is a positive gradient 
in the mean velocity of drops moving through a small 
volume of physical space. Because of the gradient, 
drops will be leaving the volume at a greater rate than 
they enter. This represents a loss of probability. 
However, / must remain a normalized distribution, by 
definition. Therefore, probability must be added into 
the volume without bias towards any droplet 
characteristic (in proportion to/). 

The last term on the right accounts for 
redistribution of probability in a'-space due to a 
gradient in the mean number density of drops. Suppose 
there is a positive gradient in the mean number density 
of drops in  a volume and the drops have various 
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velocities. Drops that are moving faster than the mean 
velocity will leave the volume in greater numbers than 
those that are moving slower than the mean. Therefore, 
the probability of finding a fast drop (faster than the 
mean) decreases while the probability of finding a slow 
drop (slower than the mean) increases and thus we have 
a shift of probability in ä' -space. 

We now have two equations which, together, are 
equivalent to equation (3). The equation for the 
evolution of the mean number density, equation (6), is 
relatively easy to solve numerically because it has the 
form of the wave equation for which there are many 
solution techniques. Conversely, equation (8) presents 
us with many of the same problems as did (3). In fact, 
equation (8) appears more complicated than (3). Not 
only do we still have to solve the equation across all of 
ä -space, but we have introduced two additional terms. 
However, as we discuss in the next section, we aren't so 
much interested in the PDF / itself, but rather various 
moments of that function. This fact will be used to 
reduce the dimensionality of equation (8). 

Moment Transport Equations 
One of the primary motivations behind this study 

is to compute various statistical averages of interest 
directly, rather than post-average volumes of simulation 
data. In this section, we derive a set of moment 
transport equations. By solving these equations, we are 
able to calculate the statistical averages at any point in 
space and time without performing a numerical 
simulation. Because of space constraints, we only give 
a cursory derivation here. A detailed derivation can be 
found in reference [15]. 

Diameter Moment Transport Equation 
Recall that the expected value, or ensemble average, 

of a quantity g(k) is defined as 

{g) = jg(k)f(k)dk (9) 

where f(k) is the PDF, and the integral is over the 
sample space of k. If g(k) is a positive, integer-order 
power of k, then (9) defines a moment of f(k). In 
particular, the average drop diameter at some location x 
and t is defined as 

{(j>} = jl<t>f((l>,y;x,t)dwd(j) (10) 

In the same manner, we can take moments of the 
transport equation for/. Multiplying equation (8) by <j> 
and recognizing that <j> is an independent coordinate so 
that it commutes with the derivative operators gives 

«/[MvM^-vKlnA] 
(11) 

Integrating over all diameter and velocity space yields 

dt 
.+Vj-(0v) = (0)VI(v) 

(12) 

(W(v)-<0v»-V>A 

This equation describes the evolution of the mean drop 
diameter through space and time. By making use of 
equation (6) and the product rule, (12) can be cast in 
conservative form as 

3W*>) 
dt 

•V,-(A(0v)) = O (13) 

Though (13) is an equation for the transport of the mean 
number density times the mean drop diameter, rather 
than just the mean drop diameter, it is in a form that is 
more convenient than equation (12) because it has a 
form similar to that of the wave equation. Using the 
same procedure, we can derive transport equations for 
the second and third moments about the origin for the 
drop diameter: 

W) 
dt 

+ VJ-(A(02v)) = O (14) 

KW)) 
dt 

+ Vi-(A(03v)) = O (15) 

Velocity   Moment Transport Equations 
Before we can derive equations for the drop velocity 

moments, we must make some changes to equation (8). 
It is well understood that droplet velocities correlate 
with the gas velocities. However, / does not contain 
any information about the gas. Therefore, we must 
model the effect the gas phase has on the drops. To do 
this, we divide the diameter axis into equal-sized "bins" 
and derive a set of velocity moment equations for each 
bin. We can then consider the spray as the 
superposition of a set of monodisperse sprays. This 
approach is similar to that taken by Tambour11 when he 
derived a series of sectional equations, each section 
representing one bin. Because the drops do not vaporize 
or breakup, we can justify treating the spray in this 
manner. 
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Using conditional probabilities, we split / into two 
separate probability distributions functions 

f(<p, v; x, t) = p(<j>; x, t) q( v; 0, x, t) (16) 

where p(<j>;x,t)d<l) is the probability that a drop will be 
within a diameter interval d(j> centered about <j>, 
conditioned on a drop existing at x and t, and 
q[v;<j>,x,t)dv is the probability that a drop will be 
within a velocity element dv centered about v, 
conditioned on a drop with diameter (j> at x and t. 
Upon substitution of (16) into (8), we have 

dt +v,-W+v,'W= 

w[Vx-(v) + ((v)-v).V>A] 
(17) 

Now let's focus on the n'h bin of the diameter axis. 
Because we have discretized the diameter axis, p(<j>;x,t) 

must also be discretized and treated as a constant in each 
bin, as must be q(\;^>,x,t). We define the binned 
probability density /* = (pq) as the probability in the 
bin divided by the width of the bin 

(«)' 

\pqd<t>    jpqdcp 

J# 
_ *. 

A0„ 
(18) 

We also define 

\pd<j>    jpd<p 
_ A. 

jd(j)       At p 
(19) 

We can thus divide equation (17) by   A0n   and then 
integrate over the width of the diameter bin to obtain 

dt 
■vI-(pVv)+vv-(/>Vä)= 

pq[Vx-(v) + {(v)-vyVJnl 
(20) 

Multiplying (20) by the drop axial velocity vx and 
integrating over all velocity space in the n'h diameter 
bin and defining A„ = Ap'A(j>n as the mean number 

density of drops in the n'h diameter bin, we arrive at 

%iU+V,.(A„<vv,)) = ^>       (2D dt x K "N    *ln>    A0„w/" 

after having made use of equation (6). 
The only issue that remains to be addressed is how 

to handle the momentum exchange terms on the right 
side of (21). Recall that we have made no assumptions 
about the spray that limit what we might use for a drag 
law, allowing us to specify any drag law of interest 
without significantly changing the equations. For the 
moment, we will assume that the drops decelerate (or 
accelerate) according to Stokes' drag law 

as_3^*v-gL_18£^(-_g) 

-P,f P,f 
(22) 

where ü is the gas velocity, fig is the gas dynamic 
viscosity, pg and p, are the gas and liquid densities, 
respectively, and vg=ßg/pg is the gas kinematic 
viscosity. Using Stokes' drag is not a limitation of the 
model. Instead, we are using it to keep the analysis 
simple while we examine the merit of the overall spray 
model. Substituting equation (22) into (21) gives 

dt       +MA'K)J 

= -f«v,>.-<0) 
(23) 

where 

T   = 
A</>2 
riYgeo,n (24) 

is the representative droplet relaxation time and (j)geon is 
the geometric mean diameter of the bin. 

Similarly, we can write equations for the mean- 
squared axial velocity, mean transverse velocity, mean- 
squared transverse velocity, and the axial/transverse 
velocity cross moment 

= -2f(«}.-(«.'.>.) 
(25) 

dt 

i- 
T 

■ + MM**,).) 
=4(w.-w) 

(26) 
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«Um) 
-^(ttHv,).) 

= -f(2<^)„-(vA)„-(vA)J 

(27) 

(28) 

Equations (6), (13) through (15), (23), and (25) through 
(28) are the set of equations that we will use to describe 
the evolution of the spray droplet PDF. However, 
because we can treat each bin as a separate spray, 
equation (6) holds in each bin, using each bin's mean 
drop velocity (v)n and number density A„. Because the 
overall number density is the sum of the binned number 
densities and Xn = Ap'A<pn, we can reconstruct the 
diameter PDF from the binned number densities. This 
alleviates our need to solve the diameter moment 
transport equations (13), (14), and (15). 

Maximum Entropy Moment  Closure  (MEMO 
This moment method is based on a hierarchical moment 
structure similar to that encountered in turbulence 
modeling. As each successive moment transport 
equation is derived, at least one new, higher-order 
moment is introduced. These unclosed moments can be 
evaluated by making use of the Maximum Entropy 
Formalism (MEF). In his study of communications 
theory, Shannon18 developed the concept of information 
entropy as a measure of probabilistic uncertainty. For a 
continuous distribution, this measure is given by 

S = -jJ(x)lnf(x)dx (29) 

Later, Jaynes19 showed that an infinite number of PDFs 
are consistent with a set of known constraints, but that 
the one that should be chosen is the one with maximum 
entropy. If a PDF with less entropy (i.e., less 
uncertainty) were used, it would imply the existence of 
some additional knowledge. However, since all the 
available knowledge was applied in the form of 
constraints, no additional knowledge would exist. Thus 
it would be inappropriate to choose any PDF other than 
the one with maximum entropy. This PDF is the most 
unbiased distribution possible within the given 
constraints. 

Because they have the greatest influence on the 
shape of the PDF, we will constrain the lowest-order 

moments (i.e. means, variances, etc.). These moments 
correspond to those for which we have derived transport 
equations. Equation (29) is maximized by way of the 
method of Lagrange multipliers. This leads to a PDF 
of the form 

/ = exp -Ä-I/U(ä') (30) 

where the ß's are the Lagrange multipliers, gr(ä') is 
the iJh functional quantity to be averaged, and M is the 
number of moment constraints. The coefficients are 
determined from a non-linear system of coupled 
differential equations which, in general, must be solved 
numerically. 

Sellens20 and Chin et. al.21 have made use of the 
MEF in their work on predicting droplet distributions 
resulting from breakup of a liquid sheet or jet. In this 
work, the breakup process is considered independently 
from gas-phase constraints, and it is not their intention 
to solve for the evolution of the droplet distribution 
throughout space and time, but rather to obtain a 
distribution for all the drops in the spray. In contrast, 
our work is focused on describing the evolution of a 
droplet PDF at every point in the flow domain and how 
that evolution is influenced by and interacts with the 
gas phase. In our approach, we model the evolution of 
the complete, coupled spray flow using moment 
equations. The MEF is introduced as a method to close 
those equations. 

Quasi-One-Dimensional   Spray   Problem 
To explore the usefulness of this approach, we 

make use of a quasi-one-dimensional spray flow. The 
purpose of this is to pose a spray problem that is 
understandable, physically interesting, and tractable. 
Moreover, we wish to look at a simple problem to 
determine if there are any flaws in the proposed closure 
models which will present themselves more readily in 
this problem than in a more complicated, multi- 
dimensional problem. 

Figure (1) shows the geometry for this problem. 
At x = 0 there is a two-dimensional array of spray 
injectors that extends infinitely in the y-direction. Each 
injector has been placed at random on this array and 
points in the ^-direction, delivering a distribution of 
drops into an incompressible gas, which initially has a 
low level of turbulence. The array and each injector on 
it extend infinitely in z-direction, resulting in a series of 
wedge sprays of spherical drops. 

Now imagine an ensemble of these arrays where, 
on each, the injectors have been placed at random. 
Because we wish to develop a quasi-one-dimensional 
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flow, we restrict the PDF for the drop velocities at each 
injector to have a mean transverse (y-direction) velocity 
of zero. If there is an infinite number of realizations in 
the ensemble, then there is no preferential location 
along the transverse axis since there is equal probability 
for a drop to have a positive y-velocity of some 
magnitude as there is for a drop to have a negative y- 
velocity of the same magnitude. Similarly, we have a 
zero-mean gas vejocity component in the y-direction, 
though fluctuations do occur. Because there is no 
preferential location along the transverse axis, there are 
no variations along that axis across the ensemble, and 
therefore, derivatives of averaged quantities in the y- 
direction are zero. So, the three primary constraints we 
have for this problem are 

(«,)=o. (v,) = 0,   |U (31) 

Also, so that no mean flow develops in the transverse 
direction, there can be no correlation between the x- and 
y-components of velocity in either phase. Thus, all 
cross-component and cross-component/cross-phase 

moments (i.e. (vJt
v

),)'(
M

J
v,)' etc-) equal zero. 

Substituting these constraints into the velocity moment 
transport equations yields 

dt dx 
= 0 (32) 

%Wf»-ifr.),W) <33, 

dt dx (34) 

dt 

h 

- + - 
dx 

-*f(W.-<v,>.) 
(35) 

If constraints (31) are applied to the incompressible 
RANS equations, we obtain 

-1^1 = 0 
dx 

(36) 

Equation (36) says that the mean gas velocity is a 
constant in space. If we specify the inlet mean gas 
velocity as a constant in time, then the mean gas 
velocity throughout the domain is constant in both 
space and time. This makes solving the gas momentum 
equation unnecessary unless one is interested in the 
pressure. Since our present interests are in the discrete 
phase and not the gas, we do not need to solve equations 
(36) and (37). However, a k-e turbulence model, 
modified to account for the drops,3 is solved since the 
gas-phase turbulence is incorporated into the cross-phase 
moments appearing in equations (34) and (35). 

The moment equations are solved using an 
implicit, first-order, upwind scheme for the spatial 
derivatives and a second-order backwards difference for 
the time derivatives. A first-order scheme was chosen 
for the spatial derivatives due to the difficulties 
associated with solving moment equations. Moment 
variables have relations among them that must be 
preserved, constraining their values. For example, the 
relation between the first and second moment of a PDF 
is 

(X2)-(X)2>0 (38) 

where X is any random variable. If this relation is not 
maintained, then the numerical solution may either 
become unstable or give non-physical answers. Second- 
order numerical solutions of hyperbolic equations can 
cause oscillations in the solution in regions of strong 
gradients, even when artificial dissipation is added. 
Being non-physical, those oscillations could cause the 
numerical solution of the variance to become negative, 
corrupting the remainder of the solution. 

For comparison, a Lagrangian simulation of the 
quasi-one-dimensional spray is performed. Individual 
drops are tracked from the injector along their 
trajectories. Because the mean gas velocity is a 
constant in space and time, the gas momentum and 
continuity equations are not solved, though a k — e 
model is used to simulate the turbulence, giving each 
drop a random "kick" over a duration equal to the eddy 
turnover time or the drop residence time, whichever is 
shorter. 

Results 
Table 1 lists the moments used to specify the 

droplet PDF at the injector and the gas phase 
characteristics. The diameter PDF is shown in Figure 2 
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and the velocity PDFs are Gaussian. The inlet 
condition for the turbulent kinetic energy corresponds to 
a RMS value of five percent of the mean gas velocity 
and the rate of dissipation of turbulent kinetic energy is 
e = it/100 sec. 

Figure 3 shows profiles of the mean number 
density. It is clear where the leading edge of the spray 
is at each time interval and how it propagates through 
the domain as a concentration wave. The mean number 
densities behind it are much greater than the injection 
mean number density. This is what we would expect 
since the drops are injected into a slower gas. The drops 
rapidly decelerate and accumulate just behind the leading 
edge. This accumulation of drops continues until the 
drops have been slowed to the mean gas velocity. The 
results compare well with the Lagrangian simulation in 
the region behind the leading edge. At the leading edge, 
the MEMC results deviate from the simulation. 
However, this is due to the numerical dissipation 
associated with the first-order numerical scheme. 

At the leading edge, the mean number density is 
quite low. When drops first arrive at some spatial 
location, only a few are present, those that were large 
enough not to have been greatly influenced by drag. 
This is shown in Figure 4 where the expected drop 
diameter is plotted. At the leading edge, there is a 
greater mean drop diameter. This is caused by the 
strong slip velocity present in the flow, decelerating all 
but the most massive drops. As we move upstream, we 
encounter the smaller drops that were quickly 
decelerated. 

Figure 5 shows how the standard deviation of the 
diameter PDF evolves. At the leading edge, the standard 
deviation is large. This comes from the fact that there 
are so few drops out on the wave front. Those drops 
present are large due to the developed size-velocity 
correlation. Figure 2 shows that there is a wide range 
of large diameters that those drops have. It can be 
argued that the shape of the standard deviation curve 
behind the leading edge is a phenomenon that arises 
from the spatial spreading of the drops that were 
initially injected, however, because the numerical 
diffusion at the leading edge, this effect may appear 
more significant than it really is. 

Figure 6 shows the mean drop axial velocity 
profiles. The region closest to the injector is where the 
highest velocity slip occurs. There are a number of 
drops passing through this region that are moving faster 
than the mean gas velocity. Due to their lower masses, 
most of those drops rapidly decelerate, reducing the 
mean velocity. The mean velocity of these drops 
approaches the mean gas velocity within 3 meters. At 
the leading edge, however, the mean velocity again 

begins to increase. To have reached the leading edge, 
those drops had to be the fastest coming out of the 
injector, and because they are also some of the largest, 
they haven't been affected by drag as much as the 
smaller drops. Thus, the mean velocity is higher at the 
edge. As the wave front continues to move forward, 
those large drops slow as evidenced by the decrease in 
the mean velocity on the front as time goes on. 

Figures 7 and 8 show the standard deviations of the 
axial and transverse velocity distribution functions. 
They are measures of the width of the velocity PDFs. 
The larger widths occur near the injector because the 
drops have not been influenced by the gas phase long 
enough to have approached the gas velocity. 
Downstream, the standard deviations rapidly decay until 
we reach the wave front. It will take a longer time for 
the larger drops to reach the gas velocity, but as the 
leading edge propagates, the standard deviations become 
smaller and smaller. Again, there is good agreement 
with the simulation. 

One thing of note is the magnitude of the drop 
axial velocity standard deviation relative to the mean 
drop velocity. At the injector, the standard deviation 
was prescribed as one-tenth of the injection mean. In 
Figure 7, however, we see it is much wider in the 
region of strong slip. This results from the fast drops 
quickly moving ahead, and slower ones lagging. Many 
drops close to the injector have decelerated, especially 
the smallest ones. There is also a significant number of 
larger drops in this region that are moving with 
velocities closer to the mean injection velocity or faster. 
Most of these drops are the more massive ones not 
having been greatly influenced by drag as yet. Thus, in 
the region of strong slip, there is a much wider 
distribution of velocities as a result of deceleration. 
This is the reason for the much higher axial velocity 
standard deviation. 

The simulation results in the figures are the 
averages of ten runs. Because of the nature of the 
simulation, and because the results are averages of only 
a few realizations, there is a great deal of noise in the 
simulation data. To smooth this out, and to better 
approximate an ensemble average, we would ideally like 
to average over thousands of simulations. However, 
because of the computational time required, we are 
prohibited from doing this. The best we can do is time 
average, but we are limited to doing this only in regions 
that have reached a steady state. We are not able to 
capture the averaged dynamics of the leading edge using 
a simulation unless we ensemble average. This is a 
significant advantage that the current model has over the 
Lagrangian simulation. 

A second advantage is the savings in computational 
time for getting detailed statistics.   Because we always 
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have an approximation to the PDF as part of the 
solution to the MEMC model, we can, at any time, 
integrate that PDF and obtain any statistics of interest. 
This is not true with the Lagrangian simulation, since, 
as the level of statistical detail increases, so does the 
time required to collect sufficient data. Figure 9 
compares the nondimensional times required to obtain 
different types of statistics between the two models for 
this problem. Other problems may have different timt 
results, though the general trends will be the same. The 
MEMC calculation was run for six seconds of flow 
time. Bar A represents the time required to run the 
simulation for the same amount of flow time and obtain 
a "snapshot" of the simulation at that point. Bar B 
denotes the amount of time required to get steady-state 
statistics at all grid locations up to 100 mm. Bars C 
and D show the time needed to obtain more detailed 
steady-state statistics up to 100 mm downstream of the 
injector. In case C, statistics were computed only on 
drops with a diameter greater than 100 (im and in case 
D, only on drops with a diameter greater than 100 |J.m 
and a velocity greater than 23 mm/s. Note that as the 
level of detail increases, so does the simulation time. 
To obtain averaged data from the simulation for the 
transient region requires an even greater amount of time 
since we must ensemble average this region, requiring 
many simulation runs. 

Conclusions 
We have developed a model which describes the 

evolution of a spray flow by transporting a series of 
moments of the droplet probability density function and 
closing those equations with a maximum entropy 
model. The model was tested on a quasi-one- 
dimensional spray and results for several quantities of 
the spray were obtained, including the expected number 
density, expected droplet diameter, and expected droplet 
velocity. We obtained acceptable agreement with 
statistical data obtained from a Lagrangian simulation, 
both in the steady-state regions and the transient region. 
We also showed that the present model can offer a 
significant computational time saving over a simulation 
when detailed statistics are desired. 
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Figure 1 Geometry for quasi-ID spray flow 
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Figure 2 Injector diameter PDF 

Expected Drop Number Density 

Q    4000 

Position (mm) 

Table 1  Injector Conditions 
Figure 3 Mean drop number density 
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